二、电子自旋和自旋磁矩

              1925年乌伦贝克(G.Uhlenbeck, 1900-1974))和高斯密特(S.Goudsmit, 1902-1979)提出了电子自旋的假设:每个电子都具有自旋角动量S,它在空间任一方向上的投影Sz 只能取两个值, 即

                      ;              (17-18) 

与自旋角动量S相对应的磁矩是自旋磁矩m s ,它们之间的关系是

                         .                  (17-19)

所以

                   ,          (17-20)   

式中me和-e分别是电子的质量和电量。上式表示,电子的自旋磁矩在空间任一方向(如外磁场方向)的分量只有两个可能的取值。

         原来,引起银原子射线束偏转的正是银原子中电子的自旋磁矩m s。照相板上出现上、下两条银原子沉积痕迹,是由于电子的自旋磁矩m s在空间只能有两个可能的取向,所以在外磁场方向的分量只有两个可能的数值。可见,自旋角动量S也具有空间量子化的性质,S在外磁场方向的分量Sz 只能取两个可能的数值。

         自旋磁矩与自旋角动量是相对应的,两者的z分量之比称为电子自旋的旋磁比,即

                   ,           (17-21)

gs 称为电子自旋的朗德因子,简称自旋g因子。由上式可见,电子自旋的g因子是绕核运动的g因子的两倍,2002年的推荐值是

          .     (17-22)

    仿照轨道角动量在空间任一方向的分量Lz 的本征值的表示

                 .

可以写出自旋角动量在空间任一方向的分量Sz的本征值为

                  .  

式中s称为自旋量子数,简称自旋,ms 称为自旋磁量子数。与m 可取2l+1个可能的数值一样,对于确定的s值,ms 也应取2s+1个可能的数值。根据乌伦贝克和高斯密特的假设,电子自旋角动量在空间任一方向上的投影Sz 只能取两个值,所以ms 也只能取两个可能的数值,即

                          2s + 1 = 2 ,

                            .                     (17-23)

这表示,电子的自旋量子数为1/2,因而电子的自旋磁量子数ms 的两个可能的数值必定是

                         .                   (17-24)

         从经典物理的角度看,只能把电子的自旋说明为一个一定大小的球绕自身轴线的旋转。假如认为电子是一个半径为2.8 fm的小球,那么要获得h/2的自旋角动量,电子表面的线速度约为真空中光速的数十倍,这显然是不可能的。到目前为止的所有实验都表明,电子是点粒子,直到10-3 fm还没有观察到任何结构。所以,既不能用经典的观点看待电子,更不能用经典的理论描述电子的自旋。电子自旋完全是一种相对论量子效应,只能用相对论量子力学来描述。

         凡是自旋量子数为半奇数(s = 1/2, 3/2, …)的粒子,称为费米子,如电子、中子和质子等。由费米子组成的粒子系统,服从费米-狄拉克统计法;凡是自旋量子数为整数(s = 0, 1, 2, …)的粒子,称为玻色子,如光子(s = 1)、p介子(s = 0)等。由玻色子组成的粒子系统,服从玻色-爱因斯坦统计法。关于费米-狄拉克统计法和玻色-爱因斯坦统计法,大家将在下一章叙述。

       
XML 地图 | Sitemap 地图